
CHAPTER 5

Support Vector Machines

A Support Vector Machine (SVM) is a very powerful and versatile Machine Learning
model, capable of performing linear or nonlinear classification, regression, and even
outlier detection. It is one of the most popular models in Machine Learning, and any‐
one interested in Machine Learning should have it in their toolbox. SVMs are partic‐
ularly well suited for classification of complex but small- or medium-sized datasets.

This chapter will explain the core concepts of SVMs, how to use them, and how they
work.

Linear SVM Classification
The fundamental idea behind SVMs is best explained with some pictures. Figure 5-1
shows part of the iris dataset that was introduced at the end of Chapter 4. The two
classes can clearly be separated easily with a straight line (they are linearly separable).
The left plot shows the decision boundaries of three possible linear classifiers. The
model whose decision boundary is represented by the dashed line is so bad that it
does not even separate the classes properly. The other two models work perfectly on
this training set, but their decision boundaries come so close to the instances that
these models will probably not perform as well on new instances. In contrast, the
solid line in the plot on the right represents the decision boundary of an SVM classi‐
fier; this line not only separates the two classes but also stays as far away from the
closest training instances as possible. You can think of an SVM classifier as fitting the
widest possible street (represented by the parallel dashed lines) between the classes.
This is called large margin classification.

145

Figure 5-1. Large margin classification

Notice that adding more training instances “off the street” will not affect the decision
boundary at all: it is fully determined (or “supported”) by the instances located on the
edge of the street. These instances are called the support vectors (they are circled in
Figure 5-1).

SVMs are sensitive to the feature scales, as you can see in
Figure 5-2: on the left plot, the vertical scale is much larger than the
horizontal scale, so the widest possible street is close to horizontal.
After feature scaling (e.g., using Scikit-Learn’s StandardScaler),
the decision boundary looks much better (on the right plot).

Figure 5-2. Sensitivity to feature scales

Soft Margin Classification
If we strictly impose that all instances be off the street and on the right side, this is
called hard margin classification. There are two main issues with hard margin classifi‐
cation. First, it only works if the data is linearly separable, and second it is quite sensi‐
tive to outliers. Figure 5-3 shows the iris dataset with just one additional outlier: on
the left, it is impossible to find a hard margin, and on the right the decision boundary
ends up very different from the one we saw in Figure 5-1 without the outlier, and it
will probably not generalize as well.

146 | Chapter 5: Support Vector Machines

Figure 5-3. Hard margin sensitivity to outliers

To avoid these issues it is preferable to use a more flexible model. The objective is to
find a good balance between keeping the street as large as possible and limiting the
margin violations (i.e., instances that end up in the middle of the street or even on the
wrong side). This is called soft margin classification.

In Scikit-Learn’s SVM classes, you can control this balance using the C hyperparame‐
ter: a smaller C value leads to a wider street but more margin violations. Figure 5-4
shows the decision boundaries and margins of two soft margin SVM classifiers on a
nonlinearly separable dataset. On the left, using a high C value the classifier makes
fewer margin violations but ends up with a smaller margin. On the right, using a low
C value the margin is much larger, but many instances end up on the street. However,
it seems likely that the second classifier will generalize better: in fact even on this
training set it makes fewer prediction errors, since most of the margin violations are
actually on the correct side of the decision boundary.

Figure 5-4. Fewer margin violations versus large margin

If your SVM model is overfitting, you can try regularizing it by
reducing C.

The following Scikit-Learn code loads the iris dataset, scales the features, and then
trains a linear SVM model (using the LinearSVC class with C = 0.1 and the hinge loss

Linear SVM Classification | 147

function, described shortly) to detect Iris-Virginica flowers. The resulting model is
represented on the right of Figure 5-4.

import numpy as np
from sklearn import datasets
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import StandardScaler
from sklearn.svm import LinearSVC

iris = datasets.load_iris()
X = iris["data"][:, (2, 3)] # petal length, petal width
y = (iris["target"] == 2).astype(np.float64) # Iris-Virginica

svm_clf = Pipeline((
 ("scaler", StandardScaler()),
 ("linear_svc", LinearSVC(C=1, loss="hinge")),
))

svm_clf.fit(X_scaled, y)

Then, as usual, you can use the model to make predictions:

>>> svm_clf.predict([[5.5, 1.7]])
array([1.])

Unlike Logistic Regression classifiers, SVM classifiers do not out‐
put probabilities for each class.

Alternatively, you could use the SVC class, using SVC(kernel="linear", C=1), but it
is much slower, especially with large training sets, so it is not recommended. Another
option is to use the SGDClassifier class, with SGDClassifier(loss="hinge",
alpha=1/(m*C)). This applies regular Stochastic Gradient Descent (see Chapter 4) to
train a linear SVM classifier. It does not converge as fast as the LinearSVC class, but it
can be useful to handle huge datasets that do not fit in memory (out-of-core train‐
ing), or to handle online classification tasks.

The LinearSVC class regularizes the bias term, so you should center
the training set first by subtracting its mean. This is automatic if
you scale the data using the StandardScaler. Moreover, make sure
you set the loss hyperparameter to "hinge", as it is not the default
value. Finally, for better performance you should set the dual
hyperparameter to False, unless there are more features than
training instances (we will discuss duality later in the chapter).

148 | Chapter 5: Support Vector Machines

Nonlinear SVM Classification
Although linear SVM classifiers are efficient and work surprisingly well in many
cases, many datasets are not even close to being linearly separable. One approach to
handling nonlinear datasets is to add more features, such as polynomial features (as
you did in Chapter 4); in some cases this can result in a linearly separable dataset.
Consider the left plot in Figure 5-5: it represents a simple dataset with just one feature
x1. This dataset is not linearly separable, as you can see. But if you add a second fea‐
ture x2 = (x1)2, the resulting 2D dataset is perfectly linearly separable.

Figure 5-5. Adding features to make a dataset linearly separable

To implement this idea using Scikit-Learn, you can create a Pipeline containing a
PolynomialFeatures transformer (discussed in “Polynomial Regression” on page
121), followed by a StandardScaler and a LinearSVC. Let’s test this on the moons
dataset (see Figure 5-6):

from sklearn.datasets import make_moons
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import PolynomialFeatures

polynomial_svm_clf = Pipeline((
 ("poly_features", PolynomialFeatures(degree=3)),
 ("scaler", StandardScaler()),
 ("svm_clf", LinearSVC(C=10, loss="hinge"))
))

polynomial_svm_clf.fit(X, y)

Nonlinear SVM Classification | 149

Figure 5-6. Linear SVM classifier using polynomial features

Polynomial Kernel
Adding polynomial features is simple to implement and can work great with all sorts
of Machine Learning algorithms (not just SVMs), but at a low polynomial degree it
cannot deal with very complex datasets, and with a high polynomial degree it creates
a huge number of features, making the model too slow.

Fortunately, when using SVMs you can apply an almost miraculous mathematical
technique called the kernel trick (it is explained in a moment). It makes it possible to
get the same result as if you added many polynomial features, even with very high-
degree polynomials, without actually having to add them. So there is no combinato‐
rial explosion of the number of features since you don’t actually add any features. This
trick is implemented by the SVC class. Let’s test it on the moons dataset:

from sklearn.svm import SVC
poly_kernel_svm_clf = Pipeline((
 ("scaler", StandardScaler()),
 ("svm_clf", SVC(kernel="poly", degree=3, coef0=1, C=5))
))
poly_kernel_svm_clf.fit(X, y)

This code trains an SVM classifier using a 3rd-degree polynomial kernel. It is repre‐
sented on the left of Figure 5-7. On the right is another SVM classifier using a 10th-
degree polynomial kernel. Obviously, if your model is overfitting, you might want to

150 | Chapter 5: Support Vector Machines

reduce the polynomial degree. Conversely, if it is underfitting, you can try increasing
it. The hyperparameter coef0 controls how much the model is influenced by high-
degree polynomials versus low-degree polynomials.

Figure 5-7. SVM classifiers with a polynomial kernel

A common approach to find the right hyperparameter values is to
use grid search (see Chapter 2). It is often faster to first do a very
coarse grid search, then a finer grid search around the best values
found. Having a good sense of what each hyperparameter actually
does can also help you search in the right part of the hyperparame‐
ter space.

Adding Similarity Features
Another technique to tackle nonlinear problems is to add features computed using a
similarity function that measures how much each instance resembles a particular
landmark. For example, let’s take the one-dimensional dataset discussed earlier and
add two landmarks to it at x1 = –2 and x1 = 1 (see the left plot in Figure 5-8). Next,
let’s define the similarity function to be the Gaussian Radial Basis Function (RBF)
with γ = 0.3 (see Equation 5-1).

Equation 5-1. Gaussian RBF

ϕγ �, ℓ = exp −γ∥ � − ℓ ∥2

It is a bell-shaped function varying from 0 (very far away from the landmark) to 1 (at
the landmark). Now we are ready to compute the new features. For example, let’s look
at the instance x1 = –1: it is located at a distance of 1 from the first landmark, and 2
from the second landmark. Therefore its new features are x2 = exp (–0.3 × 12) ≈ 0.74
and x3 = exp (–0.3 × 22) ≈ 0.30. The plot on the right of Figure 5-8 shows the trans‐
formed dataset (dropping the original features). As you can see, it is now linearly
separable.

Nonlinear SVM Classification | 151

Figure 5-8. Similarity features using the Gaussian RBF

You may wonder how to select the landmarks. The simplest approach is to create a
landmark at the location of each and every instance in the dataset. This creates many
dimensions and thus increases the chances that the transformed training set will be
linearly separable. The downside is that a training set with m instances and n features
gets transformed into a training set with m instances and m features (assuming you
drop the original features). If your training set is very large, you end up with an
equally large number of features.

Gaussian RBF Kernel
Just like the polynomial features method, the similarity features method can be useful
with any Machine Learning algorithm, but it may be computationally expensive to
compute all the additional features, especially on large training sets. However, once
again the kernel trick does its SVM magic: it makes it possible to obtain a similar
result as if you had added many similarity features, without actually having to add
them. Let’s try the Gaussian RBF kernel using the SVC class:

rbf_kernel_svm_clf = Pipeline((
 ("scaler", StandardScaler()),
 ("svm_clf", SVC(kernel="rbf", gamma=5, C=0.001))
))
rbf_kernel_svm_clf.fit(X, y)

This model is represented on the bottom left of Figure 5-9. The other plots show
models trained with different values of hyperparameters gamma (γ) and C. Increasing
gamma makes the bell-shape curve narrower (see the left plot of Figure 5-8), and as a
result each instance’s range of influence is smaller: the decision boundary ends up
being more irregular, wiggling around individual instances. Conversely, a small gamma
value makes the bell-shaped curve wider, so instances have a larger range of influ‐
ence, and the decision boundary ends up smoother. So γ acts like a regularization
hyperparameter: if your model is overfitting, you should reduce it, and if it is under‐
fitting, you should increase it (similar to the C hyperparameter).

152 | Chapter 5: Support Vector Machines

1 “A Dual Coordinate Descent Method for Large-scale Linear SVM,” Lin et al. (2008).

Figure 5-9. SVM classifiers using an RBF kernel

Other kernels exist but are used much more rarely. For example, some kernels are
specialized for specific data structures. String kernels are sometimes used when classi‐
fying text documents or DNA sequences (e.g., using the string subsequence kernel or
kernels based on the Levenshtein distance).

With so many kernels to choose from, how can you decide which
one to use? As a rule of thumb, you should always try the linear
kernel first (remember that LinearSVC is much faster than SVC(ker
nel="linear")), especially if the training set is very large or if it
has plenty of features. If the training set is not too large, you should
try the Gaussian RBF kernel as well; it works well in most cases.
Then if you have spare time and computing power, you can also
experiment with a few other kernels using cross-validation and grid
search, especially if there are kernels specialized for your training
set’s data structure.

Computational Complexity
The LinearSVC class is based on the liblinear library, which implements an optimized
algorithm for linear SVMs.1 It does not support the kernel trick, but it scales almost

Nonlinear SVM Classification | 153

http://goo.gl/R635CH
http://goo.gl/R635CH

2 “Sequential Minimal Optimization (SMO),” J. Platt (1998).

linearly with the number of training instances and the number of features: its training
time complexity is roughly O(m × n).

The algorithm takes longer if you require a very high precision. This is controlled by
the tolerance hyperparameter ϵ (called tol in Scikit-Learn). In most classification
tasks, the default tolerance is fine.

The SVC class is based on the libsvm library, which implements an algorithm that sup‐
ports the kernel trick.2 The training time complexity is usually between O(m2 × n)
and O(m3 × n). Unfortunately, this means that it gets dreadfully slow when the num‐
ber of training instances gets large (e.g., hundreds of thousands of instances). This
algorithm is perfect for complex but small or medium training sets. However, it scales
well with the number of features, especially with sparse features (i.e., when each
instance has few nonzero features). In this case, the algorithm scales roughly with the
average number of nonzero features per instance. Table 5-1 compares Scikit-Learn’s
SVM classification classes.

Table 5-1. Comparison of Scikit-Learn classes for SVM classification

Class Time complexity Out-of-core support Scaling required Kernel trick

LinearSVC O(m × n) No Yes No

SGDClassifier O(m × n) Yes Yes No

SVC O(m² × n) to O(m³ × n) No Yes Yes

SVM Regression
As we mentioned earlier, the SVM algorithm is quite versatile: not only does it sup‐
port linear and nonlinear classification, but it also supports linear and nonlinear
regression. The trick is to reverse the objective: instead of trying to fit the largest pos‐
sible street between two classes while limiting margin violations, SVM Regression
tries to fit as many instances as possible on the street while limiting margin violations
(i.e., instances off the street). The width of the street is controlled by a hyperparame‐
ter ϵ. Figure 5-10 shows two linear SVM Regression models trained on some random
linear data, one with a large margin (ϵ = 1.5) and the other with a small margin (ϵ =
0.5).

154 | Chapter 5: Support Vector Machines

http://goo.gl/a8HkE3

Figure 5-10. SVM Regression

Adding more training instances within the margin does not affect the model’s predic‐
tions; thus, the model is said to be ϵ-insensitive.

You can use Scikit-Learn’s LinearSVR class to perform linear SVM Regression. The
following code produces the model represented on the left of Figure 5-10 (the train‐
ing data should be scaled and centered first):

from sklearn.svm import LinearSVR

svm_reg = LinearSVR(epsilon=1.5)
svm_reg.fit(X, y)

To tackle nonlinear regression tasks, you can use a kernelized SVM model. For exam‐
ple, Figure 5-11 shows SVM Regression on a random quadratic training set, using a
2nd-degree polynomial kernel. There is little regularization on the left plot (i.e., a large
C value), and much more regularization on the right plot (i.e., a small C value).

Figure 5-11. SVM regression using a 2nd-degree polynomial kernel

SVM Regression | 155

The following code produces the model represented on the left of Figure 5-11 using
Scikit-Learn’s SVR class (which supports the kernel trick). The SVR class is the regres‐
sion equivalent of the SVC class, and the LinearSVR class is the regression equivalent
of the LinearSVC class. The LinearSVR class scales linearly with the size of the train‐
ing set (just like the LinearSVC class), while the SVR class gets much too slow when
the training set grows large (just like the SVC class).

from sklearn.svm import SVR

svm_poly_reg = SVR(kernel="poly", degree=2, C=100, epsilon=0.1)
svm_poly_reg.fit(X, y)

SVMs can also be used for outlier detection; see Scikit-Learn’s doc‐
umentation for more details.

Under the Hood
This section explains how SVMs make predictions and how their training algorithms
work, starting with linear SVM classifiers. You can safely skip it and go straight to the
exercises at the end of this chapter if you are just getting started with Machine Learn‐
ing, and come back later when you want to get a deeper understanding of SVMs.

First, a word about notations: in Chapter 4 we used the convention of putting all the
model parameters in one vector θ, including the bias term θ0 and the input feature
weights θ1 to θn, and adding a bias input x0 = 1 to all instances. In this chapter, we will
use a different convention, which is more convenient (and more common) when you
are dealing with SVMs: the bias term will be called b and the feature weights vector
will be called w. No bias feature will be added to the input feature vectors.

Decision Function and Predictions
The linear SVM classifier model predicts the class of a new instance x by simply com‐
puting the decision function wT · x + b = w1 x1 + ⋯ + wn xn + b: if the result is posi‐
tive, the predicted class ŷ is the positive class (1), or else it is the negative class (0); see
Equation 5-2.

Equation 5-2. Linear SVM classifier prediction

y =
0 if �T · � + b < 0,

1 if �T · � + b ≥ 0

156 | Chapter 5: Support Vector Machines

3 More generally, when there are n features, the decision function is an n-dimensional hyperplane, and the deci‐
sion boundary is an (n – 1)-dimensional hyperplane.

Figure 5-12 shows the decision function that corresponds to the model on the right of
Figure 5-4: it is a two-dimensional plane since this dataset has two features (petal
width and petal length). The decision boundary is the set of points where the decision
function is equal to 0: it is the intersection of two planes, which is a straight line (rep‐
resented by the thick solid line).3

Figure 5-12. Decision function for the iris dataset

The dashed lines represent the points where the decision function is equal to 1 or –1:
they are parallel and at equal distance to the decision boundary, forming a margin
around it. Training a linear SVM classifier means finding the value of w and b that
make this margin as wide as possible while avoiding margin violations (hard margin)
or limiting them (soft margin).

Training Objective
Consider the slope of the decision function: it is equal to the norm of the weight vec‐
tor, ∥ w ∥. If we divide this slope by 2, the points where the decision function is equal
to ±1 are going to be twice as far away from the decision boundary. In other words,
dividing the slope by 2 will multiply the margin by 2. Perhaps this is easier to visual‐
ize in 2D in Figure 5-13. The smaller the weight vector w, the larger the margin.

Under the Hood | 157

4 Zeta (ζ) is the 8th letter of the Greek alphabet.

Figure 5-13. A smaller weight vector results in a larger margin

So we want to minimize ∥ w ∥ to get a large margin. However, if we also want to avoid
any margin violation (hard margin), then we need the decision function to be greater
than 1 for all positive training instances, and lower than –1 for negative training
instances. If we define t(i) = –1 for negative instances (if y(i) = 0) and t(i) = 1 for positive
instances (if y(i) = 1), then we can express this constraint as t(i)(wT · x(i) + b) ≥ 1 for all
instances.

We can therefore express the hard margin linear SVM classifier objective as the con‐
strained optimization problem in Equation 5-3.

Equation 5-3. Hard margin linear SVM classifier objective

minimize
�, b

1
2�

T · �

subject to t i �T · � i + b ≥ 1 for i = 1, 2,⋯, m

We are minimizing 1
2 wT · w, which is equal to 1

2 ∥ w ∥2, rather than
minimizing ∥ w ∥. This is because it will give the same result (since
the values of w and b that minimize a value also minimize half of
its square), but 1

2 ∥ w ∥2 has a nice and simple derivative (it is just
w) while ∥ w ∥ is not differentiable at w = 0. Optimization algo‐
rithms work much better on differentiable functions.

To get the soft margin objective, we need to introduce a slack variable ζ(i) ≥ 0 for each
instance:4 ζ(i) measures how much the ith instance is allowed to violate the margin. We
now have two conflicting objectives: making the slack variables as small as possible to
reduce the margin violations, and making 1

2 wT · w as small as possible to increase the
margin. This is where the C hyperparameter comes in: it allows us to define the trade‐

158 | Chapter 5: Support Vector Machines

5 To learn more about Quadratic Programming, you can start by reading Stephen Boyd and Lieven Vanden‐
berghe, Convex Optimization (Cambridge, UK: Cambridge University Press, 2004) or watch Richard Brown’s
series of video lectures.

off between these two objectives. This gives us the constrained optimization problem
in Equation 5-4.

Equation 5-4. Soft margin linear SVM classifier objective

minimize
�, b, ζ

1
2�

T · � + C ∑
i = 1

m
ζ i

subject to t i �T · � i + b ≥ 1 − ζ i and ζ i ≥ 0 for i = 1, 2,⋯, m

Quadratic Programming
The hard margin and soft margin problems are both convex quadratic optimization
problems with linear constraints. Such problems are known as Quadratic Program‐
ming (QP) problems. Many off-the-shelf solvers are available to solve QP problems
using a variety of techniques that are outside the scope of this book.5 The general
problem formulation is given by Equation 5-5.

Equation 5-5. Quadratic Programming problem

Minimize
�

1
2�

T ·� · � + �
T · �

subject to � · � ≤ �

where

� is an np‐dimensional vector (np = number of parameters),

� is an np × np matrix,

� is an np‐dimensional vector,

� is an nc × np matrix (nc = number of constraints),

� is an nc‐dimensional vector.

Note that the expression A · p ≤ b actually defines nc constraints: pT · a(i) ≤ b(i) for i =
1, 2, ⋯, nc, where a(i) is the vector containing the elements of the ith row of A and b(i) is
the ith element of b.

You can easily verify that if you set the QP parameters in the following way, you get
the hard margin linear SVM classifier objective:

• np = n + 1, where n is the number of features (the +1 is for the bias term).

Under the Hood | 159

http://goo.gl/FGXuLw
http://goo.gl/rTo3Af

6 The objective function is convex, and the inequality constraints are continuously differentiable and convex
functions.

• nc = m, where m is the number of training instances.
• H is the np × np identity matrix, except with a zero in the top-left cell (to ignore

the bias term).
• f = 0, an np-dimensional vector full of 0s.
• b = 1, an nc-dimensional vector full of 1s.
• a(i) = –t(i) �̇(i), where �̇(i) is equal to x(i) with an extra bias feature �̇0 = 1.

So one way to train a hard margin linear SVM classifier is just to use an off-the-shelf
QP solver by passing it the preceding parameters. The resulting vector p will contain
the bias term b = p0 and the feature weights wi = pi for i = 1, 2, ⋯, m. Similarly, you
can use a QP solver to solve the soft margin problem (see the exercises at the end of
the chapter).

However, to use the kernel trick we are going to look at a different constrained opti‐
mization problem.

The Dual Problem
Given a constrained optimization problem, known as the primal problem, it is possi‐
ble to express a different but closely related problem, called its dual problem. The sol‐
ution to the dual problem typically gives a lower bound to the solution of the primal
problem, but under some conditions it can even have the same solutions as the pri‐
mal problem. Luckily, the SVM problem happens to meet these conditions,6 so you
can choose to solve the primal problem or the dual problem; both will have the same
solution. Equation 5-6 shows the dual form of the linear SVM objective (if you are
interested in knowing how to derive the dual problem from the primal problem, see
Appendix C).

Equation 5-6. Dual form of the linear SVM objective

minimize
α

1
2 ∑

i = 1

m
∑

j = 1

m
α i α j t i t j � i T

· � j − ∑
i = 1

m
α i

subject to α i ≥ 0 for i = 1, 2,⋯, m

160 | Chapter 5: Support Vector Machines

Once you find the vector α that minimizes this equation (using a QP solver), you can
compute � and b that minimize the primal problem by using Equation 5-7.

Equation 5-7. From the dual solution to the primal solution

� = ∑
i = 1

m
α i t i � i

b = 1
ns

∑
i = 1

α i > 0

m
1 − t i �T · � i

The dual problem is faster to solve than the primal when the number of training
instances is smaller than the number of features. More importantly, it makes the ker‐
nel trick possible, while the primal does not. So what is this kernel trick anyway?

Kernelized SVM
Suppose you want to apply a 2nd-degree polynomial transformation to a two-
dimensional training set (such as the moons training set), then train a linear SVM
classifier on the transformed training set. Equation 5-8 shows the 2nd-degree polyno‐
mial mapping function ϕ that you want to apply.

Equation 5-8. Second-degree polynomial mapping

ϕ � = ϕ
x1

x2
=

x1
2

2 x1x2

x2
2

Notice that the transformed vector is three-dimensional instead of two-dimensional.
Now let’s look at what happens to a couple of two-dimensional vectors, a and b, if we
apply this 2nd-degree polynomial mapping and then compute the dot product of the
transformed vectors (See Equation 5-9).

Under the Hood | 161

Equation 5-9. Kernel trick for a 2nd-degree polynomial mapping

ϕ � T · ϕ � =

a1
2

2 a1a2

a2
2

T

·

b1
2

2 b1b2

b2
2

= a1
2b1

2 + 2a1b1a2b2 + a2
2b2

2

= a1b1 + a2b2
2 =

a1

a2

T

·
b1

b2

2

= �
T · �

2

How about that? The dot product of the transformed vectors is equal to the square of
the dot product of the original vectors: ϕ(a)T · ϕ(b) = (aT · b)2.

Now here is the key insight: if you apply the transformation ϕ to all training instan‐
ces, then the dual problem (see Equation 5-6) will contain the dot product ϕ(x(i))T ·
ϕ(x(j)). But if ϕ is the 2nd-degree polynomial transformation defined in Equation 5-8,

then you can replace this dot product of transformed vectors simply by � i T
· � j 2

.
So you don’t actually need to transform the training instances at all: just replace the
dot product by its square in Equation 5-6. The result will be strictly the same as if you
went through the trouble of actually transforming the training set then fitting a linear
SVM algorithm, but this trick makes the whole process much more computationally
efficient. This is the essence of the kernel trick.

The function K(a, b) = (aT · b)2 is called a 2nd-degree polynomial kernel. In Machine
Learning, a kernel is a function capable of computing the dot product ϕ(a)T · ϕ(b)
based only on the original vectors a and b, without having to compute (or even to
know about) the transformation ϕ. Equation 5-10 lists some of the most commonly
used kernels.

Equation 5-10. Common kernels

Linear: K �,� = �T · �

Polynomial: K �,� = γ�T · � + r
d

Gaussian RBF: K �,� = exp −γ∥ � − � ∥2

Sigmoid: K �,� = tanh γ�T · � + r

162 | Chapter 5: Support Vector Machines

Mercer’s Theorem
According to Mercer’s theorem, if a function K(a, b) respects a few mathematical con‐
ditions called Mercer’s conditions (K must be continuous, symmetric in its arguments
so K(a, b) = K(b, a), etc.), then there exists a function ϕ that maps a and b into
another space (possibly with much higher dimensions) such that K(a, b) = ϕ(a)T ·
ϕ(b). So you can use K as a kernel since you know ϕ exists, even if you don’t know
what ϕ is. In the case of the Gaussian RBF kernel, it can be shown that ϕ actually
maps each training instance to an infinite-dimensional space, so it’s a good thing you
don’t need to actually perform the mapping!

Note that some frequently used kernels (such as the Sigmoid kernel) don’t respect all
of Mercer’s conditions, yet they generally work well in practice.

There is still one loose end we must tie. Equation 5-7 shows how to go from the dual
solution to the primal solution in the case of a linear SVM classifier, but if you apply
the kernel trick you end up with equations that include ϕ(x(i)). In fact, � must have
the same number of dimensions as ϕ(x(i)), which may be huge or even infinite, so you
can’t compute it. But how can you make predictions without knowing �? Well, the
good news is that you can plug in the formula for � from Equation 5-7 into the deci‐
sion function for a new instance x(n), and you get an equation with only dot products
between input vectors. This makes it possible to use the kernel trick, once again
(Equation 5-11).

Equation 5-11. Making predictions with a kernelized SVM

h
�, b

ϕ � n = �T · ϕ � n + b = ∑
i = 1

m
α i t i ϕ � i

T
· ϕ � n + b

= ∑
i = 1

m
α i t i ϕ � i T

· ϕ � n + b

= ∑
i = 1

α i > 0

m
α i t i K �

i , � n + b

Note that since α(i) ≠ 0 only for support vectors, making predictions involves comput‐
ing the dot product of the new input vector x(n) with only the support vectors, not all
the training instances. Of course, you also need to compute the bias term b , using the
same trick (Equation 5-12).

Under the Hood | 163

Equation 5-12. Computing the bias term using the kernel trick

b = 1
ns

∑
i = 1

α i > 0

m
1 − t i �T · ϕ � i = 1

ns
∑

i = 1
α i > 0

m
1 − t i ∑

j = 1

m
α j t j ϕ � j

T
· ϕ � i

= 1
ns

∑
i = 1

α i > 0

m
1 − t i ∑

j = 1
α j > 0

m
α j t j K �

i , � j

If you are starting to get a headache, it’s perfectly normal: it’s an unfortunate side
effects of the kernel trick.

Online SVMs
Before concluding this chapter, let’s take a quick look at online SVM classifiers (recall
that online learning means learning incrementally, typically as new instances arrive).

For linear SVM classifiers, one method is to use Gradient Descent (e.g., using
SGDClassifier) to minimize the cost function in Equation 5-13, which is derived
from the primal problem. Unfortunately it converges much more slowly than the
methods based on QP.

Equation 5-13. Linear SVM classifier cost function

J �, b = 1
2�

T · � + C ∑
i = 1

m
max 0, 1 − t i �T · � i + b

The first sum in the cost function will push the model to have a small weight vector
w, leading to a larger margin. The second sum computes the total of all margin viola‐
tions. An instance’s margin violation is equal to 0 if it is located off the street and on
the correct side, or else it is proportional to the distance to the correct side of the
street. Minimizing this term ensures that the model makes the margin violations as
small and as few as possible

Hinge Loss
The function max(0, 1 – t) is called the hinge loss function (represented below). It is
equal to 0 when t ≥ 1. Its derivative (slope) is equal to –1 if t < 1 and 0 if t > 1. It is not
differentiable at t = 1, but just like for Lasso Regression (see “Lasso Regression” on
page 130) you can still use Gradient Descent using any subderivative at t = 0 (i.e., any
value between –1 and 0).

164 | Chapter 5: Support Vector Machines

7 “Incremental and Decremental Support Vector Machine Learning,” G. Cauwenberghs, T. Poggio (2001).
8 “Fast Kernel Classifiers with Online and Active Learning,“ A. Bordes, S. Ertekin, J. Weston, L. Bottou (2005).

It is also possible to implement online kernelized SVMs—for example, using “Incre‐
mental and Decremental SVM Learning”7 or “Fast Kernel Classifiers with Online and
Active Learning.”8 However, these are implemented in Matlab and C++. For large-
scale nonlinear problems, you may want to consider using neural networks instead
(see Part II).

Exercises
1. What is the fundamental idea behind Support Vector Machines?
2. What is a support vector?
3. Why is it important to scale the inputs when using SVMs?
4. Can an SVM classifier output a confidence score when it classifies an instance?

What about a probability?
5. Should you use the primal or the dual form of the SVM problem to train a model

on a training set with millions of instances and hundreds of features?
6. Say you trained an SVM classifier with an RBF kernel. It seems to underfit the

training set: should you increase or decrease γ (gamma)? What about C?
7. How should you set the QP parameters (H, f, A, and b) to solve the soft margin

linear SVM classifier problem using an off-the-shelf QP solver?
8. Train a LinearSVC on a linearly separable dataset. Then train an SVC and a

SGDClassifier on the same dataset. See if you can get them to produce roughly
the same model.

9. Train an SVM classifier on the MNIST dataset. Since SVM classifiers are binary
classifiers, you will need to use one-versus-all to classify all 10 digits. You may

Exercises | 165

http://goo.gl/JEqVui
http://goo.gl/JEqVui
https://goo.gl/hsoUHA
https://goo.gl/hsoUHA

want to tune the hyperparameters using small validation sets to speed up the pro‐
cess. What accuracy can you reach?

10. Train an SVM regressor on the California housing dataset.

Solutions to these exercises are available in Appendix A.

166 | Chapter 5: Support Vector Machines

	Part I. The Fundamentals of Machine Learning
	Chapter 5. Support Vector Machines
	Linear SVM Classification
	Soft Margin Classification

	Nonlinear SVM Classification
	Polynomial Kernel
	Adding Similarity Features
	Gaussian RBF Kernel
	Computational Complexity

	SVM Regression
	Under the Hood
	Decision Function and Predictions
	Training Objective
	Quadratic Programming
	The Dual Problem
	Kernelized SVM
	Online SVMs

	Exercises

